-
1 Variable Bleed Valves (Перепускные клапана на входе в компрессор ГТД)
Aviation: VBVУниверсальный русско-английский словарь > Variable Bleed Valves (Перепускные клапана на входе в компрессор ГТД)
-
2 Variable Bleed Valves
Aviation: (Перепускные клапана на входе в компрессор ГТД) VBVУниверсальный русско-английский словарь > Variable Bleed Valves
-
3 регулирующая арматура
Русско-английский словарь по машиностроению > регулирующая арматура
-
4 електронна лампа с променлива стръмност
multi-mu tubemulti-mu tubesremote cut-off valveremote cut-off valvesvariable-valvevariable-valvesvariable tubevariable tubesБългарски-Angleščina политехнически речник > електронна лампа с променлива стръмност
-
5 регулируемый аппарат
Mechanics: variable valvesУниверсальный русско-английский словарь > регулируемый аппарат
-
6 клапан вентиляции торпедного аппарата
Русско-английский военно-политический словарь > клапан вентиляции торпедного аппарата
-
7 клапан осушения торпедного аппарата
Русско-английский военно-политический словарь > клапан осушения торпедного аппарата
-
8 клапан продувания торпедного аппарата
Русско-английский военно-политический словарь > клапан продувания торпедного аппарата
-
9 регулируемый направляющий аппарат ступени
1) Mechanics: variable stage guide valves2) Automation: variable stage guide valves (осевого компрессора)Универсальный русско-английский словарь > регулируемый направляющий аппарат ступени
-
10 регулируемый
регулировать несовset upвоздухозаборник с регулируемой передней кромкойvariable lip air intakeкислородный прибор регулируемой подачиdemand-type oxygen regulatorрегулировать газораспределениеtime the valvesрегулировать двигатель до заданных параметровadjust the engineрегулировать качество смесиadjust mixtureрегулировать малый газadjust idle powerрегулировать по высотеadjust for heightрегулировать применениеgovern the applicationрегулировать тросadjust the cableрегулируемая опораajustable support(например, гидроподъемника) регулируемая поворотная лопаткаvariable bladeрегулируемая распорная втулкаabutment sleeve assemblyрегулируемая скоростьgoverned speedрегулируемая тяга1. controllable thrust2. variable thrust регулируемое сиденьеadjustable seatрегулируемый воздухозаборник1. controllable intake2. variable-geometry intake регулируемый насадок индивидуальной вентиляцииadjustable air outletрегулируемый упорajustable stop(шага лопасти воздушного винта) сопло с регулируемым сечениемvariable area nozzleтяга, регулируемая по величине и направлениюvectored thrust -
11 регулируемый направляющий аппарат
1) Engineering: variable guide vanes, variable stater2) Automation: variable guide valves (осевого компрессора)Универсальный русско-английский словарь > регулируемый направляющий аппарат
-
12 узел (агрегат, блок)
assembly, unit
ряд деталей или подузлов, соединенных вместе для выполнения определенной функции. — а number of parts or subassemblies or any combination thereof joined together to perform a specific function.
- (единица скорости) морская миля (1852 м в час) — knot (к, kt) а nautical mile per hour.
- (изделие) количество деталей на изделие (графа таблицы). — assembly (assy) units per assy.
- (составная часть агрегата, блока, установки) — sub-assembly, subassembly
две или более деталей, о6разующих часть агрегата (сборки) или блока и заменяемых как одно целое, но включающее деталь (детали), подлежащие индивидуальной замене. — two оr more parts which form а portion of an assembly or а unit replaceable as а whole, but having а part or parts which are individually replaceable.
- а (обозначение на чертеже) — detail а
- (часть) агрегата — sub-assembly, assembly
the distinction between an assembly and sub-assembly is not always exact.
- баков (масляных) (блок) — oil tank assembly
два отдельных бака установлены в одном узле. — two separate tanks are housed within the tank assembly.
-, гиростабилизированный, на карданном подвесе — gyro stabilized gimbal assembly
- гироскопа — gyro assembly
- дозирующей иглы (топлива) — throttle valve assembly
-, законченный (конструктивно) — definite-purpose assembly
-, качающий — pumping unit
насос имеет два отдельных качающих узла, состоящих из блока плунжеров, вращающихся no скошенной пяте. — the pump has two independent pumping units consisting of pfunger rotating assembly working against a variable angle swash plate.
- клапана (поддержания) постоянного (пропорционального) перепада давлений (насоса-регулятора) — proportioning valve unit
- компрессора (двиг.) — compressor section
- компрессора (подраздел 72-30) — compressor section
- контроля (блока питания) — monitoring device
работа основана на сравнении контролируемых напряжений с эталонными.
- крепления — attach(ment) fitting
- крепления груза (на борту ла) — cargo tie-down fitting
- крепления двигателя — engine mounting attachment
узлы крепления двигателя и конструкция, несущая эти узлы, должны выдерживать указанные нагрузки без разрушения, поломки или остаточной деформации. — the engine mounting attachments and related structure must be able to withstand the specified loads without failure, malfunction, or permanent deformation.
- крепления закрылка — flap attach(ment) fitting
- крепления крыла — wing attachment fitting
узлы служат для крепления крыла к фюзеляжу. — the fittings on the wing used to attach the wing to the fuselage.
- крепления оси колес (к стойке шасси) — wheel axle attachment fitting
- крепления руля высоты (или направления) — elevator (or rudder) hinge /attach/ fitting
- крепления опоры шасси, (передний, задний) — (forward, aft) landing gear strut attachment fitting
- крепления страховочных строп (или троса) — safety harness (or line) attach(ment) point /receptacle/
- крепления, шарнирный — hinge fitting
- крепления элерона — aileron hinge /attach/ fitting
-, магнито-индукционный (тахометра) — magnetic-drag assembly
-, манометрический — pressure capsule assembly
-, манометрический (трубка бурдона) — bourdon tube assembly
-, мембранный — (pressure) capsule assembly
- мембранный (указателя скорости) — airspeed capsule
- навески (общий термин) — attach(ment) fitting
узлы, служащие для крепления стабилизатора, руля высоты, триммеров, обтекателей. — the fittings on the stabilizers used for attachment of stabilizers, elevators, rudder tabs, fillets/fairings.
- навески (шарнирный) (рис. 10) — hinge fitting
- навески закрылка — flap attach(ment) fitting
- навески руля высоты (направления или элерона) — elevator (rudder or aileron) hinge fitting
- навески руля направления, верхний (нижний) — rudder top (bottom) hinge fitting
- навески руля высоты (или элерона), внешний — elevator (or aileron) outboard hinge fitting
- навески руля высоты (или элерона), внутренний (корневой) — elevator (or aileron) inboard hinge fitting
- навески руля (или элерона), средний — elevator (оr aileron) center hinge fitting
- навески триммера — trim tab hinge fitting
- навески шасси — landing gear (shock strut) attachment fitting
- насоса, управляющий — pump controlling section
- ограничения (раскрутки) оборотов (насоса-регулятора) — overspeed limiting control
- основной дозирующей иглы (командно-топливного агрегата или насоса-регулятора) — throttle valve (sub-) assembly (of fuel flow control unit)
- плунжерный качающий (наcoca) — plunger rotating assembly
- поворота крыла (в горизонтальной плоскости) — wing pivot (assembly)
- подвески вооружения на пилоне — weapon-pylon base
- подвески двигателя — engine mount
каркас, поддерживающий двигатель и крепящий его к мотогондоле или пилону. — the framework which supports an engine and attach it to the nacelle or pylon.
-, поршневой (узел цилиндров тормоза колеса) — cylinder assembly
- приемника-процессора, электронный — receiver-processor electronic assembly
- прямой (завязки шнуров, тросов) — square knot
- разъема коммуникаций, унифицированный (уурк) — combined services connector
- растормаживания (тормоза колеса) — (brake) retraction mechanism
для возвращения (после снятия давления в тормозе) нажимного диска в исходное положение, т.е. для растормаживания колеса. — the brake has automatic adjustment, integral with the retraction mechanism built into each piston, movement of the piston compresses the retraction springs.
-, регулируемой подпитки (топливом гтд) — variable enrichment unit
-, рифовый (завязки строп) — reef knot
-, рычажно-кулачковый (дозир. иглы) — throttle valve cam and lever assembly
-, силовой (блок цилиндров тормоза колеса) — cylinder assembly
-, скоростной (указателя скорости) — airspeed capsule
-, страховочный (для крепления страховочного троса или ремня) — safety rоре (or belt) attach fitting /point/
-, стыковой (стыковочный) (рис. 16) — attachment fitting
-, такелажный (точка подъема) (рис. 10) — hoist point
- такелажный (деталь) — hoist fitting
- турбины — turbine section
состоит из ступеней высок. и низк. давлений, приводящих во вращение соответствующие компрессоры. — consists of hp and lp stages, each driving their own compressors through concentric shafts.
- турбины (подраздел 72 - 50) — turbine section
- турбины и реактивного сопла — turbine and exhaust section /unit/
- (-) удавка (завязки шнуров, тросов) — running knot, slip knot
- управления и блокировки реверса тяги (насоса-регулятора) — thrust reverser control and interlocking unit
- управления приемистостью (топливного насоса-регулятора) — acceleration control (unit)
-, функционально законченный — definite-purpose assembly
- цилиндров (блок тормоза колеса) — cylinder assembly
-, швартовочный (груза на борту ла) — tie-down fitting
-, швартовочный (швартовый, ла) (рис. 150) — mooring fitting
- штока амортизатора (шасси), нижний — shock strut piston lower fitting
- электро-гидравлический /электро-гидромеханический / (гидроусилителя) — electro-hydraulic unit
командные эл. сигналы подаются в электрогидравлический узел гидроусилителя (бустера), в котором они преобразуются в механическое перемещение соответствующих золотников. — autocontrol demands are signalled electrically to the electrohydraulic unit on each surface drive (hydraulic booster) which converts them to mechanical movements (of corresponding slide valves)
завязывать у. — tie a knot
развязывать у. — loose a knot
определять дефект в у. (точнo устанавливать отказавший узел) — isolate the trouble into sub-assemblyРусско-английский сборник авиационно-технических терминов > узел (агрегат, блок)
-
13 регулируемый направляющий аппарат
( осевого компрессора) variable guide valvesРусско-английский исловарь по машиностроению и автоматизации производства > регулируемый направляющий аппарат
-
14 кулачок
cam
- (выступ шайбы газораспределения звездообразного пд) — lobe the front row track lobes operate the intake valves.
- впускного клапана — intake cam
- выпускного клапана — exhaust cam
-, двухступенчатый — double-lift cam
-, замкнутый (в программном механизме) — contact make cam, cam making contacts closed
- изменяемого профиля — variable-profile cam
- прерывателя (магнето) — breaker cam
-, разомкнутый (в программном механизме) — contact break cam, cam making contacts open /broken/
вершина к. — highest point of cam lobe
выступ к. — cam lobe
дорожка к. — cam track
к. замыкается (т.е. замыкает контакты) — cam makes contact
к. размыкается (т.е. размыкает контакты) — cam breaks contactРусско-английский сборник авиационно-технических терминов > кулачок
-
15 De Forest, Lee
SUBJECT AREA: Broadcasting, Electronics and information technology, Photography, film and optics, Recording, Telecommunications[br]b. 26 August 1873 Council Bluffs, Iowa, USAd. 30 June 1961 Hollywood, California, USA[br]American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.[br]De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.[br]Principal Honours and DistinctionsInstitute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.Bibliography1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.Further ReadingG.Carneal, 1930, A Conqueror of Space (biography).I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.KF / JW -
16 Ricardo, Sir Harry Ralph
[br]b. 26 January 1885 London, Englandd. 18 May 1974 Graffham, Sussex, England[br]English mechanical engineer; researcher, designer and developer of internal combustion engines.[br]Harry Ricardo was the eldest child and only son of Halsey Ricardo (architect) and Catherine Rendel (daughter of Alexander Rendel, senior partner in the firm of consulting civil engineers that later became Rendel, Palmer and Tritton). He was educated at Rugby School and at Cambridge. While still at school, he designed and made a steam engine to drive his bicycle, and by the time he went up to Cambridge in 1903 he was a skilled craftsman. At Cambridge, he made a motor cycle powered by a petrol engine of his own design, and with this he won a fuel-consumption competition by covering almost 40 miles (64 km) on a quart (1.14 1) of petrol. This brought him to the attention of Professor Bertram Hopkinson, who invited him to help with research on turbulence and pre-ignition in internal combustion engines. After leaving Cambridge in 1907, he joined his grandfather's firm and became head of the design department for mechanical equipment used in civil engineering. In 1916 he was asked to help with the problem of loading tanks on to railway trucks. He was then given the task of designing and organizing the manufacture of engines for tanks, and the success of this enterprise encouraged him to set up his own establishment at Shoreham, devoted to research on, and design and development of, internal combustion engines.Leading on from the work with Hopkinson were his discoveries on the suppression of detonation in spark-ignition engines. He noted that the current paraffinic fuels were more prone to detonation than the aromatics, which were being discarded as they did not comply with the existing specifications because of their high specific gravity. He introduced the concepts of "highest useful compression ratio" (HUCR) and "toluene number" for fuel samples burned in a special variable compression-ratio engine. The toluene number was the proportion of toluene in heptane that gave the same HUCR as the fuel sample. Later, toluene was superseded by iso-octane to give the now familiar octane rating. He went on to improve the combustion in side-valve engines by increasing turbulence, shortening the flame path and minimizing the clearance between piston and head by concentrating the combustion space over the valves. By these means, the compression ratio could be increased to that used by overhead-valve engines before detonation intervened. The very hot poppet valve restricted the advancement of all internal combustion engines, so he turned his attention to eliminating it by use of the single sleeve-valve, this being developed with support from the Air Ministry. By the end of the Second World War some 130,000 such aero-engines had been built by Bristol, Napier and Rolls-Royce before the piston aero-engine was superseded by the gas turbine of Whittle. He even contributed to the success of the latter by developing a fuel control system for it.Concurrent with this was work on the diesel engine. He designed and developed the engine that halved the fuel consumption of London buses. He invented and perfected the "Comet" series of combustion chambers for diesel engines, and the Company was consulted by the vast majority of international internal combustion engine manufacturers. He published and lectured widely and fully deserved his many honours; he was elected FRS in 1929, was President of the Institution of Mechanical Engineers in 1944–5 and was knighted in 1948. This shy and modest, though very determined man was highly regarded by all who came into contact with him. It was said that research into internal combustion engines, his family and boats constituted all that he would wish from life.[br]Principal Honours and DistinctionsKnighted 1948. FRS 1929. President, Institution of Mechanical Engineers 1944–5.Bibliography1968, Memo \& Machines. The Pattern of My Life, London: Constable.Further ReadingSir William Hawthorne, 1976, "Harry Ralph Ricardo", Biographical Memoirs of Fellows of the Royal Society 22.JBBiographical history of technology > Ricardo, Sir Harry Ralph
См. также в других словарях:
Variable valve timing — Variable valve timing, or VVT, is a generic term for an automobile piston engine technology. VVT allows the lift or duration or timing (some or all) of the intake or exhaust valves (or both) to be changed while the engine is in operation. Two… … Wikipedia
Variable valve actuation — Variable Valve Actuation, or VVA, is a generalised term used to describe any mechanism or method that can alter the shape or timing of a valve lift event within an internal combustion engine. There are many ways in which this can be achieved,… … Wikipedia
Variable displacement — is an automobile engine technology that allows the engine displacement to change, usually by deactivating cylinders, for improved fuel economy. The technology is primarily used in large, multi cylinder engines. Many automobile manufacturers have… … Wikipedia
Variable length intake manifold — (VLIM) is an automobile engine manifold technology. As the name implies, VLIM can vary the length of the intake tract in order to optimize power and torque, as well as provide better fuel efficiency.There are two main effects of variable intake… … Wikipedia
Variable Cam Timing — Variable Camshaft Timing (VCT) is an automobile variable valve timing technology developed by Ford. It utilizes electronically controlled hydraulic valves that direct engine oil into the camshaft phaser cavity. These oil control solenoids are… … Wikipedia
Variable Cylinder Management — (VCM) is Honda s term for a variable displacement technology. It uses the i VTEC system to disable one bank of cylinders during specific driving conditions (for example, highway driving) to save fuel. The 2008 Accord takes this a step further… … Wikipedia
Variable Specific Impulse Magnetoplasma Rocket — Artist s impression of several VASIMR engines propelling a craft through space The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electro magnetic thruster for spacecraft propulsion. It uses radio waves to ionize and heat a… … Wikipedia
Variable Valve Event and Lift — Nissan Variable Valve Event and Lift (commonly known as VVEL) is an automobile variable valve timing technology developed by Nissan. Nissan VVEL was introduced with the Nissan VQ Engine VQ37VHR in 2007 on the Infiniti G37. VQ37VHR motor specs: 11 … Wikipedia
variable valve actuation — In older engines, the intake and exhaust valves operated in a fixed program of timed openings and closings. With variable valve actuation, these actions are varied for a better balance of low speed, medium speed, and high speed operation … Dictionary of automotive terms
variable valve timing — Through the use of computers, the precise time when the valves open and close can be altered. It may be better to change the timing slightly when the engine is at a higher RPM than when it is slower … Dictionary of automotive terms
Continuous variable valve timing — offers a unique ability to have independent control of the intake and exhaust valves in an internal combustion engine. For any engine load criteria, the timing of intake and exhaust can be independently programmed [1]. The main variations of… … Wikipedia